19 research outputs found

    Property-based biomass feedstock grading using k-Nearest Neighbour technique

    Get PDF
    Abstract: Energy generation from biomass requires a nexus of different sources irrespective of origin. A detailed and scientific understanding of the class to which a biomass resource belongs is therefore highly essential for energy generation. An intelligent classification of biomass resources based on properties offers a high prospect in analytical, operational and strategic decision-making. This study proposes the -Nearest Neighbour (-NN) classification model to classify biomass based on their properties. The study scientifically classified 214 biomass dataset obtained from several articles published in reputable journals. Four different values of (=1,2,3,4) were experimented for various self normalizing distance functions and their results compared for effectiveness and efficiency in order to determine the optimal model. The -NN model based on Mahalanobis distance function revealed a great accuracy at =3 with Root Mean Squared Error (RMSE), Accuracy, Error, Sensitivity, Specificity, False positive rate, Kappa statistics and Computation time (in seconds) of 1.42, 0.703, 0.297, 0.580, 0.953, 0.047, 0.622, and 4.7 respectively. The authors concluded that -NN based classification model is feasible and reliable for biomass classification. The implementation of this classification models shows that -NN can serve as a handy tool for biomass resources classification irrespective of the sources and origins

    Wind turbine power output short-term forecast : a comparative study of data clustering techniques in a PSO-ANFIS model

    Get PDF
    Abstract:The emergence of new sites for wind energy exploration in South Africa requires an accurate prediction of the potential power output of a typical utility-scale wind turbine in such areas. However, careful selection of data clustering technique is very essential as it has a significant impact on the accuracy of the prediction. Adaptive neurofuzzy inference system (ANFIS), both in its standalone and hybrid form has been applied in offline and online forecast in wind energy studies, however, the effect of clustering techniques has not been reported despite its significance. Therefore, this study investigates the effect of the choice of clustering algorithm on the performance of a standalone ANFIS and ANFIS optimized with particle swarm optimization (PSO) technique using a synthetic wind turbine power output data of a potential site in the Eastern Cape, South Africa. In this study a wind resource map for the Eastern Cape province was developed. Also, autoregressive ANFIS models and their hybrids with PSO were developed. Each model was evaluated based on three clustering techniques (grid partitioning (GP), subtractive clustering (SC), and fuzzy-c-means (FCM)). The gross wind power of the model wind turbine was estimated from the wind speed data collected from the potential site at 10 min data resolution using Windographer software. The standalone and hybrid models were trained and tested with 70% and 30% of the dataset respectively. The performance of each clustering technique was compared for both standalone and PSO-ANFIS models using known statistical metrics. From our findings, ANFIS standalone model clustered with SC performed best among the standalone models with a root mean square error (RMSE) of 0.132, mean absolute percentage error (MAPE) of 30.94, a mean absolute deviation (MAD) of 0.077, relative mean bias error (rMBE) of 0.190 and variance accounted for (VAF) of 94.307. Also, PSO-ANFIS model clustered with SC technique performed the best among the three hybrid models with RMSE of 0.127, MAPE of 28.11, MAD of 0.078, rMBE of 0.190 and VAF of 94.311. The ANFIS-SC model recorded the lowest computational time of 30.23secs among the standalone models. However, the PSO-ANFIS-SC model recorded a computational time of 47.21secs. Based on our findings, a hybrid ANFIS model gives better forecast accuracy compared to the standalone model, though with a trade-off in the computational time. Since, the choice of clustering technique was observed to play a vital role in the forecast accuracy of standalone and hybrid models, this study recommends SC technique for ANFIS modeling at both standalone and hybrid models

    Towards low-carbon energy state in South Africa: a survey of energy availability and sustainability

    Get PDF
    Abstract : The drive towards low-carbon economy in South Africa has necessitated alternative energy sources for electricity generation. More alternative sources have evolved in recent times with a view to making energy available to all and sundry. However, asides proliferation of these sources and extensions in form of micro-grids, the questions of increased availability and sustainability has become a growing concern. This survey investigates the state of the renewable energy system in South Africa with focus on the elements, which enhance energy availability and sustainability in the emerging transition to a low- carbon economy. Case studies of other countries were reviewed and considered in the South African context. It was observed that energy availability on the journey to the low-carbon economy is influenced by physical, climatic, human, prosumer concept and political factors. In sustaining the transition and progressing to a green economy, intelligent use of data from power generation, transmission, and distribution sectors for intelligent data-driven decision-making processes was also found as essential. As part of the sustainability roadmap, efficiency at the end-user side of the value chain and a system thinking paradigm in the harvesting of renewable energy sources (RES) and formulation of supporting policies were also identified. In the overall, the study reveals that South Africa is replete with abundance of RES, however, their continuous availability and sustainability depends on joint interventions of both stakeholders and the government with viable environment for the growth of the sector

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste

    Get PDF
    Abstract: Energy from municipal solid waste is steadily being integrated into the global energy feedstock, given the huge amount of waste being generated from various sources. This study develops a Multilayer Perceptron Artificial Neural Network for the prediction of High Heating Value of municipal solid waste as a function of moisture content, carbon, hydrogen, oxygen, nitrogen, sulphur, and ash. A total of 123 experimental data were extracted from reliable database for training, testing, and validation of the model. This model was trained, validated and tested with 70%, 20%, and 10% of the municipal solid waste biomass datasets respectively. The predicted High Heating Value was compared with the experimental data for two different training functions: Levenberg Marquardt backpropagation and Resilience backpropagation, and with some correlation from the literature. The accuracy of the model was reported based on some known performance criteria. The values of Root Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Coefficient of Correlation (CC) were 3.587, 2.409, 21.680, 0.970 respectively for RP and 3.095, 0.328, 22.483, 0.986 for LM respectively. Regression analysis was also carried out to determine the level of correlation between the experimental and predicted High Heating Values (HHV). The authors concluded that these models can be a useful tool in the prediction of heating value of MSW in order to facilitate clean energy production from waste

    Geospatial investigation of physico-chemical properties and thermodynamic parameters of biomass residue for energy generation

    Get PDF
    Abstract:Biomass represents vast under-explored feedstock for energy generation across the globe. Among other factors, the location from where the feedstock is harvested may affect the overall properties and the efficiency of bioreactors used in the conversion process. Herein is reported some physicochemical properties, the kinetic study and thermodynamic analysis of corn cob sourced from two major economies in sub-Sahara African region. Brunauer Emmett and Teller (BET) analysis was performed to investigate the surface characteristics of corn cob while Fourier Transform Infrared Spectroscopy (FTIR) revealed the corresponding functional group present in the selected biomass residue. The proximate and CHNSO analyses were performed using the standard equipment and following the standard procedures, then the result is reported and compared based on the geographical locations under consideration. Also, the thermal decomposition study was carried out at different heating rate (10, 15, 30 Cmin-1) in inert atmosphere while the kinetic parameters were evaluated based on Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS) methods The Analysis of variance (ANOVA) showed that there is a statistically significant difference between ultimate constituents, the fixed carbon, and volatile matter obtained from the two countries at 95% confidence level. FTIR showed different spectra peak in both samples which means there are varying quantity of structural elements in each feedstock. The pore surface area (1.375 m²/g ) obtained for corncob from South Africa (SC25) was greater than the value (1.074 m²/g ) obtained for Nigeria (NC25). From the result, the highest value of activation energy, (Ea =190.1 kJmol-1 and 189.9 kJmol-1) was estimated for SC25 based on KAS and FWO methods respectively. The result showed that geographical location may somewhat affect some energetic properties of biomass and further provides useful information about thermodynamic and kinetic parameters which could be deployed in the simulation, optimization and scale-up of the bioreactors for pyrolysis process

    A model for efficient consumption of electricity in residential buildings

    Get PDF
    Abstract : This paper reviews various applications of Radio Frequency Identification (RFID) technology and proposes electricity-saving power switch enhancements model to control the operation of electrical appliances in residential buildings using RFID system. Estimation was made on the consumption of electricity in a private apartment in Pretoria, Gauteng Province, South Africa and compared with when the RFID card-reader system is deployed. The percentage energy saving in a year was calculated to be approximately 29 %. The possible energy savings for a period of 30years is estimated and the return on investment (ROI) determined. The authors concluded by making a case for a state policy on RFID energy efficiency technology

    Wastage amidst shortage: Strategies for the mitigation of standby electricity in residential sector in Nigeria.

    Get PDF
    Due to rising population and the increasing rate of urbanization, residential electricity usage accounts for a large chunk of Nigeria’s electricity consumption. However, little attention is paid to electricity conservation in the country. In response to this, several studies are been tailored to ensure a rapid reduction in energy consumption through various alternatives including energy efficient technologies given the current state of inadequate electricity supply in the country. On this note, this article discusses the significance of standby electricity in Nigeria. The electricity generation and consumption patterns were briefly discussed while the current electricity saving behaviour and practices among the urban dwellers were detailed with a case study analysed. Based on the case study, it was discovered that the mean standby load across the 30 households were estimated at 60 W ranging from 34-144 W. Also, standby consumption accounts for 13-44% of the annual electricity consumption across the households. Finally, the strategies for electricity saving and sustainable consumption, most especially the mitigation of standby electricity were highlighted

    Blended tropical almond residue for fuel production: characteristics, energy benefits, and emission reduction potential

    Get PDF
    Abstract:Besides the nuts produced from almond cultivation, it also generates several million tonnes of residue that include hulls, shells, leaves, pruning, and inedible kernels which are valuable feedstocks in clean fuel production. In this article, blended tropical almond residue of two particle sizes (NT15 and NT25) were investigated. The heating, proximate and ultimate values were reported while the chemical composition of the ash was determined. Also, the pore structure and the inherent functional groups were determined for the particle sizes. The thermogravimetric analysis was also carried out to determine the thermal behaviour at different heating rate (10, 15, 30 oCmin-1) in inert environment while the kinetic parameters were evaluated based on three non-isothermal methods (Flynn– Wall–Ozawa, Kissinger–Akahira–Sunose and distributed activation energy model). Notably, the ash content was higher in the finer particle size NT15 (1.11 %) compared to NT25 (0.87 %). Low pore surface area (1.218-0.970 m²g-1) agrees with literature values while a slight difference in pore size distribution was observed during adsorption at higher relative pressure. A representation of mixed functional groups whose wavelength falls within 527 cm-1, 848 cm-1, 991 cm-1, 1035 cm-1, 1179 cm-1, 1597 cm-1, 1772 cm-1, 2849 cm-1 was observed with no significant difference between the two particle sizes. The average activation energy, Ea for NT15 and NT25 were in the range of 127.4-131 kJmol-1 and 129-133 kJmol-1 respectively for all the three methods, with the lowest Ea (127.4 kJmol-1) and compensation factor, K0 (1.29E+12 min-1) obtained for the smaller particle size (NT15) based on Kissinger–Akahira–Sunose method. Finally, the energy benefits and CO2 emission reduction potential were estimated. The highest energy potential is in USA (4.17 Mtoe) while Morocco has the highest emission reduction at 3.28 %. The information obtained from this study can be used in the scaling up of bioreactors which can further support the global clean energy drive and reduce environmental pollution
    corecore